113 research outputs found

    Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee Intermediate as oligomer chain unit

    Get PDF
    An important fraction of secondary organic aerosol (SOA) formed by atmospheric oxidation of diverse volatile organic compounds (VOC) has recently been shown to consist of high-molecular weight oligomeric species. In our previous study (Sadezky et al., 2006), we reported the identification and characterization of oligomers as main constituents of SOA from gas-phase ozonolysis of small enol ethers. These oligomers contained repeated chain units of the same chemical composition as the main Criegee Intermediates (CI) formed during the ozonolysis reaction, which were CH<sub>2</sub>O<sub>2</sub> (mass 46) for alkyl vinyl ethers (AVE) and C<sub>2</sub>H<sub>4</sub>O<sub>2</sub> (mass 60) for ethyl propenyl ether (EPE). In the present work, we extend our previous study to another enol ether (ethyl butenyl ether EBE) and a variety of structurally related small alkenes (<i>trans</i>-3-hexene, <i>trans</i>-4-octene and 2,3-dimethyl-2-butene). <br><br> Experiments have been carried out in a 570 l spherical glass reactor at atmospheric conditions in the absence of seed aerosol. SOA formation was measured by a scanning mobility particle sizer (SMPS). SOA filter samples were collected and chemically characterized off-line by ESI(+)/TOF MS and ESI(+)/TOF MS/MS, and elemental compositions were determined by ESI(+)/FTICR MS and ESI(+)/FTICR MS/MS. The results for all investigated unsaturated compounds are in excellent agreement with the observations of our previous study. Analysis of the collected SOA filter samples reveal the presence of oligomeric compounds in the mass range 200 to 800 u as major constituents. The repeated chain units of these oligomers are shown to systematically have the same chemical composition as the respective main Criegee Intermediate (CI) formed during ozonolysis of the unsaturated compounds, which is C<sub>3</sub>H<sub>6</sub>O<sub>2</sub> (mass 74) for ethyl butenyl ether (EBE), <i>trans</i>-3-hexene, and 2,3-dimethyl-2-butene, and C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> (mass 88) for extit{trans}-4-octene. Analogous fragmentation pathways among the oligomers formed by gas-phase ozonolysis of the different alkenes and enol ethers in our present and previous study, characterized by successive losses of the respective CI-like chain unit as a neutral fragment, indicate a similar principal structure. In this work, we confirm the basic structure of a linear oligoperoxide – [CH(R)-O-O]<sub>n</sub> – for all detected oligomers, with the repeated chain unit CH(R)OO corresponding to the respective major CI. The elemental compositions of parent ions, fragment ions and fragmented neutrals determined by accurate mass measurements with the FTICR technique allow us to assign a complete structure to the oligomer molecules. We suggest that the formation of the oligoperoxidic chain units occurs through a new gas-phase reaction mechanism observed for the first time in our present work, which involves the addition of stabilized CI to organic peroxy radicals. Furthermore, copolymerization of CI simultaneously formed in the gas phase from two different unsaturated compounds is shown to occur during the ozonolysis of a mixture of extit{trans}-3-hexene and ethyl vinyl ether (EVE), leading to formation of oligomers with mixed chain units C<sub>3</sub>H<sub>6</sub>O<sub>2</sub> (mass 74) and CH<sub>2</sub>O<sub>2</sub> (mass 46). We therefore suggest oligoperoxide formation by repeated peroxy radical-stabilized CI addition to be a general reaction pathway of small stabilized CI in the gas phase, which represents an alternative way to high-molecular products and thus contributes to SOA formation

    Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002)

    Get PDF
    International audienceDetailed investigations of the chemical and microphysical properties of rural continental aerosols were performed during the HAZE2002 experiment, which was conducted in May 2002 at the Meteorological Observatory Hohenpeissenberg (DWD) in Southern Germany. Online measurements included: Size-resolved chemical composition of submicron particles; total particle number concentrations and size distributions over the diameter range of 3 nm to 9 ?m; gas-phase concentration of monoterpenes, CO, O3, OH, and H2SO4. Filter sampling and offline analytical techniques were used to determine: Fine particle mass (PM2.5), organic, elemental and total carbon in PM2.5 (OC2.5, EC2.5, TC2.5), and selected organic compounds (dicarboxylic acids, polycyclic aromatic hydrocarbons, proteins). Overall, the non-refractory components of submicron particles detected by aerosol mass spectrometry (PM1, 6.6±5.4 ?g m?3, arithmetic mean and standard deviation) accounted for ~62% of PM2.5 determined by filter gravimetry (10.6±4.7 ?g m?3). The relative proportions of non-refractory submicron particle components were: (23±39)% ammonium nitrate, (27±23)% ammonium sulfate, and (50±40)% organics (OM1). OM1 was closely correlated with PM1 (r2=0.9) indicating a near-constant ratio of non-refractory organics and inorganics. The average ratio of OM1 to OC2.5 was 2.1±1.4, indicating a high proportion of heteroelements in the organic fraction of the sampled rural aerosol. This is consistent with the high ratio of oxygenated organic aerosol (OOA) over hydrocarbon-like organic aerosol (HOA) inferred from the AMS results (4:1), and also with the high abundance of proteins (~3%) indicating a high proportion of primary biological material (~30%) in PM2.5. This finding was confirmed by low abundance of PAHs (?3) and EC (?3) in PM2.5 and detection of several secondary organic aerosol compounds (dicarboxylic acids) and their precursors (monoterpenes). New particle formation was observed almost every day with particle number concentrations exceeding 104 cm?3 (nighttime background level 1000?2000 cm?3). Closer inspection of two major events indicated that the observed nucleation agrees with ternary H2SO4/H2O/NH3 nucleation and that condensation of both organic and inorganic species contributed to particle growth

    Multiple Statistical Analysis Techniques Corroborate Intratumor Heterogeneity in Imaging Mass Spectrometry Datasets of Myxofibrosarcoma

    Get PDF
    MALDI mass spectrometry can generate profiles that contain hundreds of biomolecular ions directly from tissue. Spatially-correlated analysis, MALDI imaging MS, can simultaneously reveal how each of these biomolecular ions varies in clinical tissue samples. The use of statistical data analysis tools to identify regions containing correlated mass spectrometry profiles is referred to as imaging MS-based molecular histology because of its ability to annotate tissues solely on the basis of the imaging MS data. Several reports have indicated that imaging MS-based molecular histology may be able to complement established histological and histochemical techniques by distinguishing between pathologies with overlapping/identical morphologies and revealing biomolecular intratumor heterogeneity. A data analysis pipeline that identifies regions of imaging MS datasets with correlated mass spectrometry profiles could lead to the development of novel methods for improved diagnosis (differentiating subgroups within distinct histological groups) and annotating the spatio-chemical makeup of tumors. Here it is demonstrated that highlighting the regions within imaging MS datasets whose mass spectrometry profiles were found to be correlated by five independent multivariate methods provides a consistently accurate summary of the spatio-chemical heterogeneity. The corroboration provided by using multiple multivariate methods, efficiently applied in an automated routine, provides assurance that the identified regions are indeed characterized by distinct mass spectrometry profiles, a crucial requirement for its development as a complementary histological tool. When simultaneously applied to imaging MS datasets from multiple patient samples of intermediate-grade myxofibrosarcoma, a heterogeneous soft tissue sarcoma, nodules with mass spectrometry profiles found to be distinct by five different multivariate methods were detected within morphologically identical regions of all patient tissue samples. To aid the further development of imaging MS based molecular histology as a complementary histological tool the Matlab code of the agreement analysis, instructions and a reduced dataset are included as supporting information

    Atmos. Environ.

    No full text

    Formation of secondary organic aerosol and oligomers from the ozonolysis of enol ethers

    No full text
    International audienceFormation of secondary organic aerosol has been observed in the gas phase ozonolysis of a series of enol ethers, among them several alkyl vinyl ethers (AVE, ROCH=CH2), such as ethyl, propyl, n-butyl, iso-butyl, t-butyl vinyl ether, and ethyl propenyl ether (EPE, C2H5OCH=CHCH3). The ozonolysis has been studied in a 570 l spherical glass reactor at atmospheric pressure (730 Torr) and temperature (296 K). Gas phase reaction products were investigated by in-situ FTIR spectroscopy, and secondary organic aerosol (SOA) formation was monitored by a scanning mobility particle sizer (SMPS). The chemical composition of the formed SOA was analysed by a hybrid mass spectrometer using electrospray ionization (ESI). The main stable gas phase reaction product is the respective alkyl formate ROC(O)H, formed with yields of 60 to 80%, implying that similar yields of the corresponding Criegee Intermediates (CI) CH2O2 for the AVE and CH3CHO2 for EPE are generated. Measured SOA yields are between 2 to 4% for all enol ethers. Furthermore, SOA formation is strongly reduced or suppressed by the presence of an excess of formic acid, which acts as an efficient CI scavenger. Chemical analysis of the formed SOA by ESI(+)/MS-TOF allows to identify oligomeric compounds in the mass range 200 to 800 u as its major constituents. Repetitive chain units are identified as CH2O2 (mass 46) for the AVE and C2H4O2 (mass 60) for EPE and thus have the same chemical compositions as the respective major Criegee Intermediates formed during ozonolysis of these ethers. The oligomeric structure and chain unit identity are confirmed by HPLC/ESI(+)/MS-TOF and ESI(+)/MS/MS-TOF experiments, whereby successive and systematic loss of a fragment with mass 46 for the AVE (and mass 60 for EPE) is observed. It is proposed that the oligomer has the following basic structure of an oligoperoxide, -[CH(R)-O-O]n-, where R=H for the AVE and R=CH3 for the EPE. Oligoperoxide formation is thus suggested to be another, so far unknown reaction of stabilized Criegee Intermediates in the gas phase ozonolysis of oxygen-containing alkenes leading to SOA formation

    Correlative mass spectrometry imaging, applying TOF-SIMS and AP-MALDI to a single tissue section.

    No full text
    RATIONALE: Mass spectrometry imaging (MSI) is a powerful tool for mapping the surface of a sample. Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) and Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization (AP-MALDI) offer complementary capabilities. Here, we present a workflow to apply both techniques to a single tissue section and combine the resulting data on the example of human colon cancer tissue. METHODS: Following cryo-sectioning, images were acquired using the high spatial resolution (1 μm pixel size) provided by TOF-SIMS. The same section was then coated with a para-nitroaniline matrix and images were acquired using AP-MALDI coupled to an Orbitrap mass spectrometer, offering high mass resolution, high mass accuracy and MS/MS capabilities. Datasets provided by both mass spectrometers were converted into the open and vendor-independent imzML file format and processed with the open-source software MSiReader. RESULTS: The TOF-SIMS and AP-MALDI-MS mass spectra show strong signals of fatty acids, cholesterol, phosphatidylcholine and sphingomyelin. We showed a high correlation between the fatty acid ions detected with TOF-SIMS in negative ion mode and the phosphatidylcholine ions detected with AP-MALDI in positive ion mode using a similar setting for visualization. Histological staining on the same section allowed the identification of the anatomical structures and their correlation with the ion images. CONCLUSIONS: This multimodal approach using two MSI platforms shows an excellent complementarity for the localization and identification of lipids. The spatial resolution of both systems is at or close to cellular dimensions and thus spatial correlation can only be obtained if the same tissue section is analyzed sequentitially. imzML-based data processing allows a real correlation of the imaging datasets provided by these two technologies and opens the way for a more complete molecular view of the anatomical structures of biological tissues

    Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius

    No full text
    Mass spectrometry imaging provides for non-targeted, label-free chemical imaging. In this study, atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) was used for the first time to describe the chemical distribution of the defensive compounds pederin, pseudopederin, and pederon in tissue sections (16 μm thick) of the rove beetle Paederus riparius. The whole-insect tissue section was scanned with a 20-μm step size. Mass resolution of the orbital trapping mass spectrometer was set to 100,000 at m/z 200. Additionally, organ-specific compounds were identified for brain, nerve cord, eggs, gut, ovaries, and malpighian tubules. To confirm the distribution of the specific compounds, individual organs from the insect were dissected, and MSI experiments were performed on the dissected organs. Three ganglia of the nerve cord, with a dimension of 250–500 μm, were measured with 10-μm spatial resolution. High-quality m/z images, based on high spatial resolution and high mass accuracy were generated. These features helped to assign mass spectral peaks with high confidence. Mass accuracy of the imaging experiments was <3 ppm root mean square error, and mapping of different compound classes from a single experiment was possible. This approach improved the understanding of the biochemistry of P. riparius. Concentration differences and distributions of pederin and its analogues could be visualized in the whole-insect section. Without any labeling, we assigned key lipids for specific organs to describe their location in the body and to identify morphological structures with a specificity higher than with staining or immunohistology methods
    • …
    corecore